
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020 1403

Memory-Efficient Learning for Large-Scale
Computational Imaging

Michael Kellman , Kevin Zhang, Eric Markley, Jon Tamir , Member, IEEE, Emrah Bostan,
Michael Lustig, and Laura Waller

Abstract—Critical aspects of computational imaging systems,
such as experimental design and image priors, can be optimized
through deep networks formed by the unrolled iterations of classi-
cal physics-based reconstructions. Termed physics-based networks,
they incorporate both the known physics of the system via its
forward model, and the power of deep learning via data-driven
training. However, for realistic large-scale physics-based networks,
computing gradients via backpropagation is infeasible due to the
memory limitations of graphics processing units. In this work, we
propose a memory-efficient learning procedure that exploits the re-
versibility of the network’s layers to enable physics-based learning
for large-scale computational imaging systems. We demonstrate
our method on a compressed sensing example, as well as two large-
scale real-world systems: 3D multi-channel magnetic resonance
imaging and super-resolution optical microscopy.

Index Terms—Fourier ptychographic microscopy, image
reconstruction, iterative optimization, magnetic resonance imag-
ing, memory-efficient backpropagation, physics-based learning,
unrolled networks.

I. INTRODUCTION

COMPUTATIONAL imaging systems (e.g. tomographic
systems, computational optics, magnetic resonance imag-

ing (MRI)) jointly design software and hardware to retrieve

Manuscript received March 11, 2020; revised July 14, 2020; accepted Septem-
ber 16, 2020. Date of publication September 22, 2020; date of current version
October 9, 2020. This work was supported in part by STROBE: A National
Science Foundation Science & Technology Center under Grant DMR 1548924,
in part by National Science Foundation under Award 1755326, and in part by
the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative
through Grant GBMF4562 to Laura Waller (UC Berkeley). Laura Waller is
a Chan Zuckerberg Biohub investigator. The work of M. R. Kellman was
supported by the National Science Foundation’s Graduate Research Fellowship
under Grant DGE 1106400. The work of E. Bostan’s was supported by the
Swiss National Science Foundation (SNSF) under Grant P2ELP2 172278. The
work of M. Lustig’s was supported in part by GE Health care and in part by
National Institutes of Health under Awards R01EB026136, R01HL136965, and
R01EB009690. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. O. Gallo. (Corresponding author:
Michael Kellman.)

Michael Kellman, Kevin Zhang, Jon Tamir, Michael Lustig, and
Laura Waller are with the Electrical Engineering and Computer Sci-
ences, University of California Berkeley, Berkeley, CA 94720 USA (e-
mail: kellman@berkeley.edu; kevinzhang1@berkeley.edu; jtamir@utexas.edu;
mlustig@berkeley.edu; waller@berkeley.edu).

Eric Markley is with the Bioengineering, UC Berkeley, Berkeley, CA 94720
USA (e-mail: emarkley@berkeley.edu).

Emrah Bostan is with the Informatics Institute, University of Amsterdam,
1012 WX Amsterdam, Netherlands (e-mail: emrah.bostan@gmail.com).

This article has supplementary downloadable material available at https://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TCI.2020.3025735

information which is not traditionally accessible. Generally,
such systems are characterized by how the information is en-
coded (forward process) and decoded (inverse problem) from
the measurements. Recently, physics-based learning [1] has
demonstrated the ability to directly optimize a computational
imaging system’s performance [2]–[14]. Physics-based learning
takes advantage of both the known physics of the system’s
forward model process and the architecture of the decoder’s
iterative optimizer to build a differentiable neural network that is
efficiently parameterized by only a limited number of learnable
variables, thereby enabling training using less data [8], [9], [11],
while still retaining the robustness and interpretability associated
with conventional physics-based inverse problems. Specifically,
physics-based networks (PbN) are constructed by unrolling the
iterations of an image reconstruction algorithm (e.g. proximal
gradient descent [15] or half quadratic splitting [16]), where
the iterations of the optimizer form the layers of the network.
Hence, the physical forward model is built into the architecture
of the network. Commonly, standard signal prior models (e.g.
total variation) or a function that enforces consistency (i.e.
proximal operators) have been replaced by a learnable convo-
lutional neural network [2], [4], [6], [11], [13], [17] to model
the image priors. One can also learn the data capture scheme
(i.e. experimental design) by making the system parameters that
form the measurements learnable [8]–[10]).

Many computational imaging systems present a unique chal-
lenge for PbN implementation, due to the large size and dimen-
sionality of variables that are decoded from the measurements.
Training such a PbN relies on gradient-based updates computed
using backpropagation (an implementation of reverse-mode dif-
ferentiation [18]) for learning. As the quantity of decoded infor-
mation grows, the memory required to perform backpropagation
(via automatic differentiation) may exceed the memory capacity
of the graphics processing unit (GPU).

Methods to save memory during backpropagation (forward
recalculation, forward checkpointing, and reverse recalculation)
trade off storage and computational complexity (i.e. the amount
of memory and time required for each unrolled layer) [18].
Rather than storing the whole computational graph required
for auto-differentiation in memory, these methods reform the
graph on an on-demand basis. For a PbN with N layers, stan-
dard backpropagation stores the whole graph, achieving O(N)
computational and storage complexity. Forward recalculation
instead reforms unstored parts of the graph by reevaluating the
operations of the network forward from the beginning. This

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-6311-9875
https://orcid.org/0000-0001-9113-9566
https://orcid.org/0000-0003-1243-2356
mailto:kellman@berkeley.edu
mailto:kevinzhang1@berkeley.edu
mailto:jtamir@utexas.edu
mailto:mlustig@berkeley.edu
mailto:waller@berkeley.edu
mailto:emarkley@berkeley.edu
mailto:emrah.bostan@gmail.com
https://ieeexplore.ieee.org

1404 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

achievesO(1) storage complexity, but hasO(N2) computational
complexity because layers of the graph are recomputed from the
beginning of the network, while backpropagation requires access
to the layers in reverse order. Forward checkpointing saves
variables every K layers and forward-recalculates unstored lay-
ers of the graph from the closest stored variables (checkpoints),
thus directly trading off computational, O(NK), and storage,
O(N/K), complexity. Reverse recalculation provides a practical
solution to beat the trade-off between storage vs. computational
complexities by reforming unstored layers of the graph in reverse
order from the output of the network (in the same order as
required for backpropagation), yielding O(N) computational
and O(1) storage complexities.

Here, we propose a memory-efficient learning procedure
based on the concept of reverse recalculation and invertibility
that will enable physics-based learning for general large-scale
computational imaging systems. The main contributions of this
work are:

1) General memory-efficient learning procedure for physics-
based networks. We describe how to compute gradients for
physics-based learning for networks formed from gradient
and proximal update layers without any significant modi-
fications to the architecture of the layers. These layers are
seen in a large swath of image reconstruction algorithms,
making physics-based learning more feasible for many
large-scale physics-based networks. In this work, we focus
on the commonly-used proximal gradient descent [15] and
half quadratic splitting [16] algorithms.

2) A hybrid reverse-recalculation and checkpointing scheme
to ensure accuracy. There are several common sources of
error: accumulation due to numerical precision and the
convergence of PbNs constructed from convex programs.
Our hybrid scheme mitigates both issues with a small
number of checkpoints.

3) Demonstration of results for general computational imag-
ing systems. We learn the design for several large-scale
computational imaging systems: 3D multi-channel com-
pressed sensing MRI and super-resolution optical mi-
croscopy. In each of these applications, we are able to learn
the computational imaging system’s design using PbNs
previously proposed in literature at a scale larger than
was previously possible. These specific architectures were
selected from already published works to demonstrate the
broad class of physics-based network to which our method
applies. We observe similar quality results to those works,
but do not claim that they are the best performing. To the
best of our knowledge, we demonstrate the first example
of memory-efficient learning in the area of computational
microscopy.

II. RELATED WORKS

Our work considers memory-efficient learning for a general
class of physics-based networks to enable learning for large-
scale computational imaging systems. Previous work can be
classified under the following categories:

Learning for Computational Imaging: Methods can be
categorized into physics-based and physics-free approaches.
Physics-based [1]–[14] methods consider the inclusion of the
forward model process and the structure of inverse problem opti-
mization in the physics-based network. Physics-free approaches
use a black box architecture (e.g. UNets [19]) to learn the decoder
relationship without prior knowledge of the forward model. The
former require fewer learnable parameters than the later, allow-
ing them to be trained using less data. In addition, physics-based
methods are more robust in experimental settings and inherit the
interpretability associated with classic inverse problems. The
recent work by Ongie et al. [14] has a comprehensive review of
these methods.

Invertible Learning: Recently, invertible networks have been
popularized to perform reverse-mode differentiation to save
memory [17], [20]–[23] and model high-dimensional densi-
ties [24]–[30]. All based on the concept of reverse recalcu-
lation [18], these methods form networks from a sequence
of invertible operations, thereby alleviating the need to store
intermediate variables in memory for computing gradients using
backpropagation. Our method relies on the same concept of
reverse recalculation to perform memory-efficient learning [18],
[21] for networks composed of gradient and proximal update lay-
ers, making physics-based learning feasible for a wider variety
of large-scale physics-based networks.

The work by Putzky and Welling (2019) [17] is most similar
to our work. It demonstrates memory-efficient learning using a
modified recurrent inference machine [12] architecture that re-
lies on the forward model and an invertible layer with orthogonal
1× 1 convolutions for applications in MRI. With a similar goal
in mind, our work presents a more general method that does
not require any significant modification to the physics-based
network for invertibility and includes many options for layers
(i.e. gradient, proximal, least-squares update layers). This will
make physics-based learning more feasible for users wanting to
design large-scale computational imaging systems. The storage
and computation required for our method and the work in [17]
are further contrasted in Sec. VII.

Implicit Function Theorem: Memory-efficient differentiation
can be performed using implicit function theorem (IFT) when
the network minimizes an objective function. Specifically, IFT
can compute gradients of a network that achieves a fixed point
or an optimum by differentiating its optimality equations at that
point with respect to the learnable parameters. It’s usefulness has
been demonstrated to differentiation through optimization prob-
lems via the Karush–Kuhn–Tucker conditions [31], for meta-
learning [32], [33], to learn fixed-point methods [34], and to
backpropagate through recurrent networks [35]. Physics-based
networks are formed by optimization problems and thus could
potentially benefit from these concepts. However, in many cases
physics-based networks are stopped early prior to convergence
to a fixed point due to limited computation or as a method
of regularization. Using IFT also does not allow independent
parameters to be learned for different layers of the network and
variables associated with the optimizer itself (e.g. step size and

KELLMAN et al.: MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE COMPUTATIONAL IMAGING 1405

Fig. 1. Physics-based Networks (PbNs) are formed by unrolling the iterations
of an image reconstruction optimization. Each layer contains one iteration, made
up of a data consistency update and signal prior update. The PbN input is the
reconstruction’s initialization, x(0), and the output is the reconstructed image
from the N th layer, which is fed into the learning loss, L.

Algorithm 1: Proximal Gradient Descent.

Inputs x(0)-initialization, α-step size, N -maximum
number of iterations

Output x(N)-final estimate of image
1: n← 1
2: for n < N do
3: z(n) ← x(n−1) − α∇xD(x(n−1);y)
4: x(n) ← argmin

x
P(x) + 1

2‖x− z(n)‖22
5: n← n+ 1
6: end for

acceleration rate), while computing gradients via backpropaga-
tion does.

III. BACKGROUND

The forward process for a typical computational imaging
system describes how information about the image to be
reconstructed, x, is encoded into the measurements, y. Specifi-
cally,

y = A(x) + n, (1)

where A is the forward model that characterizes the measure-
ment system physics and n is noise. The forward model is a
continuous process, but is often represented by a discrete ap-
proximation. The inverse problem (i.e. decoding) is commonly
formulated as an optimization problem,

x� = argmin
x

D(x;y) + P(x), (2)

where D(·) is a data consistency penalty and P(·) is a signal
prior penalty. When the noise, n, is governed by a known
noise model, the data consistency penalty can be written as the
negative log-likelihood of the appropriate distribution. Proximal
gradient descent (PGD) and half quadratic splitting (HQS) are
two choices of algorithm for minimizing the objective in Eq. 2
and can be used to form PbNs (Fig. 1) that alternate between
minimizing the data consistency and signal prior penalties.

PGD is efficient in the case when A is non-linear and/or P(x)
is not smooth in x (e.g. �1, total variation). The PGD algorithm
(Alg. 1) is composed of alternating gradient and proximal update
steps. In Alg. 1, α is the gradient step size, ∇x is the gradient
operator, and x(k) and z(k) are intermediate variables for the kth
iteration.

Algorithm 2: Half Quadratic Splitting.

Inputs x(0)-initialization, μ-penalty parameter,
N -maximum number of iterations

Output x(N)-final estimate of image
1: n← 1
2: for n < N do
3: z(n) ← argmin

z
D(z;y) + μ‖z− x(n−1)‖22

4: x(n) ← argmin
x

P(x) + μ‖x− z(n)‖22
5: n← n+ 1
6: end for

HQS is a more efficient algorithm when the forward model,A,
is linear and P(x) is not smooth in x. While similar to PGD in
alternating between data consistency and prior updates, HQS
instead performs a full model inversion rather than a single
gradient step for the data consistency update. This process is
described in Alg. 2, with μ representing a penalty parameter that
weights the data consistency and signal prior penalties. When
the noise has a normal distribution and A is linear, Line 3 of
Alg. 2, can be efficiently solved via the conjugate gradient (CG)
method.

The structure of the PbN is determined by unrolling N iter-
ations (Fig. 1) of the optimizer (Eq. 2) to form N layers of a
network (e.g. for PGD, Line 3 and 4 of Alg. 1 form a single
layer and for HQS, Line 3 and 4 of Alg. 2 form a single layer).
The input to the network is the initial guess for the reconstructed
image,x(0), and the output is the resultant,x(N). Commonly, the
learnable parameters are optimized using gradient-based meth-
ods (e.g. stochastic gradient descent (SGD) or adaptive moment
estimation (Adam) [36]). Machine learning toolboxes’ (e.g.
PyTorch [37], Tensor Flow [38]) auto-differentiation function-
alities are used to compute the gradients. Auto-differentiation
creates a computational graph composed of the PbN’s operations
and stores intermediate variables in memory on the forward pass
of the network. On the backward pass, auto-differentiation traces
through the graph from the output to the input, computing the
Jacobian-vector product for each operation.

IV. METHODS

Inspired by from concepts of reverse recalculation described
in Griewank & Walther [18] and Gomez et al. [21], our method
improves the storage and computational complexity of back-
propagation for PbNs. First, we treat the single large graph
for auto-differentiation as a series of smaller graphs. Then, we
rely on each physics-based layer’s invertibility to reform each
smaller graph from the network’s output in reverse order. By
only requiring a single layer to be stored in memory at a time,
we save a factor of N in memory. By computing the smaller
graphs in reverse order, we save on computation compared to
other methods such as forward checkpointing.

Consider a PbN, F, composed of a sequence of layers,

x(n) = F(n)
(
x(n−1); θ(n)

)
, (3)

1406 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 2. Memory-efficient learning procedure for a single layer: 1) Recalculate
the layer’s input, x(n−1), from the output, x(n), by applying that layer’s
inverse operations. 2) Recompute the auto-differentiation graph for that single
layer. 3) Backpropagate gradients, q(n) = ∂L/∂x(n), through the layer’s
auto-differentiation graph.

Algorithm 3: Memory-Efficient Learning for Physics-
Based Networks.

Inputs x(N)-output of physics-based network,
q(N)-gradient of loss with respect to state at output

Output {∇θ(n)L}Nn=1-gradients with respect to learnable
parameters at each layer

1: n← N
2: for n > 0 do
3: x(n−1) ← F

(n)
inverse(x

(n); θ(n−1))
4: v(n) ← F(n)(x(n−1); θ(n−1))
5: q(n−1) ← ∂v(n)

∂x(n−1)q
(n)

6: ∇θ(n)L← ∂v(n)

∂θ(n) q
(n)

7: n← n− 1
8: end for

where x(n−1) and x(n) are the nth layer input and output,
respectively, and θ(n) are its learnable parameters. When per-
forming reverse-mode differentiation, the method treats a PbN
of N layers as N separate smaller graphs, generated on demand,
processed and stored one at a time, rather than as a single large
graph, thereby saving a factor N in memory. As outlined in
Alg. 3 and Fig. 2, we first recalculate the current layer’s input,
x(n−1), from its output, x(n), using F

(n)
inverse (Alg. 3 line 3), and

then form one of the smaller graphs by recomputing the output
of the layer, v(n), from the recalculated input (Alg. 3 line 4). To
compute gradients, we then rely on auto-differentiation of each
layer’s smaller graph to compute the gradient of the loss, L,
with respect to x(n) (denoted q(n)) (Alg. 3 line 5) and ∇θ(n)L

(Alg. 3 line 6). The procedure is repeated for all N layers in
reverse order.

In order to perform the reverse-mode differentiation effi-
ciently, our method must be able to compute each layer’s inverse
operation, F(n)

inverse. The remainder of this section overviews the
procedures to invert gradient and proximal update layers. In
addition, special treatment is given to the proximal operation
performed in the least-squares update layer to highlight several
computational details.

Algorithm 4: Inverse for Gradient Layer.
Inputs z-output of gradient descent layer, L-number of
iterations

Output x(L)-estimate of gradient descent layer’s input
1: l← 0
2: x(l) ← z
3: for l < L do
4: x(l+1) ← z+ α∇xD(x(l);y)
5: l← l + 1
6: end for

A. Inverse of Gradient Update Layer

A common interpretation of gradient descent is as a forward
Euler discretization of the continuous-time ordinary differential
process [15] gradient flow. With steps of size α, the nth gradient
descent step is,

x(n) ← x(n−1) − α∇xD(x(n−1);y). (4)

As a consequence, the inverse of the gradient update layer (Eq. 4)
can be viewed as a backward Euler step,

x(n−1) = x(n) + α∇xD(x(n−1);y). (5)

This is an implicit equation and x(n) can be solved for
iteratively via the backward Euler method using a fixed-point
algorithm (Alg. 4) [15]. Convergence is guaranteed if

Lip (α∇xD(x;y)) < 1, (6)

where Lip(·) computes the Lipschitz constant of its argu-
ment [39]. In the setting when D(x;y) = ‖Ax− y‖2 and
the forward model, A, is linear, this can be ensured if α <

1
σmax(AHA)

, where σmax(·) computes the largest singular value
of its argument. Finally, as given by Banach Fixed Point Theo-
rem, the fixed point algorithm (Alg. 4) will have an exponential
rate of convergence [39].

B. Inverse of Proximal Update Layer

The proximal update is defined as the optimization prob-
lem [15],

x(n) ← proxP(x
(n−1)) (7)

← argmin
v

P(v) +
1

2
‖v − x(n−1)‖22. (8)

For differentiable P(·), the solution to Eq. 8 gives,

x(n) = x(n−1) −∇xP(x
(n)). (9)

In contrast to the gradient update layer, the proximal update
layer can be thought of as a backward Euler step of a continuous-
time ordinary differential process [15]. This allows its inverse
to be expressed as a forward Euler step,

x(n−1) = x(n) +∇xP(x
(n)), (10)

when the proximal function is bijective (e.g. prox�2
). If the

proximal function is not bijective (e.g. prox�1
), the inversion is

not straightforward; however, in many cases we can substitute it

KELLMAN et al.: MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE COMPUTATIONAL IMAGING 1407

with a bijective function with similar behavior. For example, soft
thresholding, the proximal operator of �1 norm, is not bijective,
but can be made so by adding a small slope (further discussed
in Sec. VIII-A).

C. Inverse of Least-Squares Update Layer

The least-squares update is used in optimizers such as HQS
and alternating direction method of multiplers (ADMM) and
is more efficient than PGD in the number of unrolled lay-
ers required as it performs the complete minimization of the
data consistency penalty at each iteration. When examined,
this update is technically a proximal operation and thanks to
its differentiability it has an exact inverse as outlined in the
previous section (Sec. IV-B). We treat it separately because of its
importance in many algorithms and because of efficient solution
using CG.

This update minimizes the data consistency penalty regular-
ized by the previous estimate, x(n−1),

x(n) ← argmin
v
‖A(v)− y‖22 + μ‖v − x(n−1)‖22, (11)

where μ varies the amount of regularization. Giving its name,
this optimization can be solved in closed form using least-
squares when the forward model, A(·), is linear,

x(n) ← (
AHA+ μI

)−1
(AHy +

μ

2
x(n−1)), (12)

where A denotes the linear forward model. When A models a
linear translation invariant system, it is a circular convolution,
the Fourier transform diagonalizes the model, and Eq. 12 can be
computed in closed form by dividing by the power spectrum
of the system’s convolution kernel. However, computational
imaging systems often form A not as an explicit matrix, but as a
series of operators. In this case, the inversion can be efficiently
computed using the CG method.

The inverse operation of this layer (Eq. 12) can be expressed
in closed form as

x(n−1) =
1

μ

((
AHA+ μI

)
x(n) −AHy

)
. (13)

When using a CG method to perform the forward model inver-
sion (Eq. 12), Eq. 13 is accurate only if CG performs the forward
model inversion accurately. This is source of numerical error is
further discussed in Sec. V.

V. HYBRID REVERSE RECALCULATION AND CHECKPOINTING

Reverse recalculation of the unstored variables is non-exact,
as the operations to calculate the variables are not identical
to forward calculation. The result is numerical error between
the original forward and reverse calculated variables. As more
iterations are unrolled, numerical errors can accumulate.

To mitigate these effects, we can use checkpointing. Some of
the intermediate variables can be stored from forward calculation
and used in substitution for the recalculated variables, that
could incur accumulated numerical errors. Memory permitting,
as many checkpoints as possible should be stored to ensure
accuracy while performing reverse recalculation. Due to the size
of the intermediate variables, large-scale PbNs cannot afford to

store all variables required for reverse-mode differentiation, but
it is often possible to store a few as checkpoints.

Further, when enough iterations of the reconstruction opti-
mization (Eq. 2) are unrolled, convergence of the intermediate
variables can often be observed. When this occurs, inversion
of each layer’s operations (Alg. 3 line 3) becomes ill-posed. For
example, when PGD converges the gradient of the reconstruction
loss will vanish (i.e. become zero), thus Alg. 4 will return its
input and the inversion will fail.

Checkpointing can again be used to reduce these effects.
If convergence behavior is observed, then checkpoints can be
stored during later layers to correct inversion error. Econom-
ically, checkpoints should be placed closer together for later
layers and less frequently for earlier layers (this further discussed
in Sec. VIII-A).

VI. RESULTS

We first demonstrate our memory-efficient learning method
with a small-scale compressed sensing system as an exam-
ple, then with two real-world large-scale applications. In the
compressed sensing example, we learn the measurement ma-
trix to improve reconstruction performance. In the first of our
large-scale applications, we improve the image quality for 3D
multi-channel compressed sensing MRI by learning signal priors
to regularize the reconstruction. In the second, we improve
the temporal resolution of super-resolution microscopy (Fourier
Ptychography) by learning the system’s experimental design.

A. Learned Measurements for Compressed Sensing

Compressed sensing combines random measurements and
regularized optimization to reduce the sampling requirements
of a signal below the Nyquist rate [40]. It has seen practical
success in many fields (e.g. MRI [41], holography [42], optical
imaging [43]). A natural question to ask is, which measure-
ments provide the best signal recovery for a class of signals?
Specifically, we recover arbitrary one-sparse signals from linear
measurements and learn the linear measurement matrix with
a PbN. We learn a set of 7 coded 1D masks; each scalar
measurement is the dot product of a mask with the signal. We
optimize recovery of the signal in terms of mean square error,
for a problem with relatively small dimensions and scale. This
small-scale problem lets us rapidly demonstrate the accuracy
of our method and compare against other methods. The PbN is
constructed by unrolling PGD for the reconstruction loss,

x� = argmin
x
‖Ax− y‖22 + λ‖x‖1. (14)

where A ∈ R7×10, x ∈ R10 is a one-sparse signal, y ∈ R7 is a
measurement signal, and λ trades off the data consistency and
sparsity prior penalties. The PbN is formed from 800 unrolled
iterations of PGD with a step size of 0.05 and λ = 0.06. For
our method, a modified soft thresholding function is used as the
proximal operator, where a small slope (on the order of 1e−6) is
added to the zeroed region to make it an invertible function (as
discussed in Sec. IV-B). Training was conducted for 20 epochs
with 20 training data points, batch size of 4, and learning rate

1408 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 3. Learned measurements for 1D compressed sensing: (a) Mean testing
loss for learning using standard and memory-efficient learning techniques.
(b) Initial (Gaussian randomly distributed) and learned measurement matrices
using standard and memory-efficient techniques. (c) Two testing examples of
reconstructions with random and learned measurement schemes, demonstrating
both improved signal recovery using the learned measurements in comparison
to the random measurements and similarity between standard and memory-
efficient learning (while requiring 4.1KB, ∼ 800× less memory than standard
backpropagation).

of 1e−2 using ADAM [36]. 50 checkpoints are used to mitigate
error due to numerical precision (as discussed in Sec. V).

Fig. 3 shows a comparison between the testing loss for stan-
dard and memory-efficient learning techniques, initial random
and optimized measurement matrices, and several testing data
points for the ground truth with the signal recovered using the
learned and initial matrix (random Gaussian variable). As seen in
Fig. 3(c), the learned measurement matrices have better signal
recovery than the random matrix. The learned measurements
and signal recovery using our method and standard learning are
similar, however, our method uses∼ 800× less memory. Where
our method uses a modified soft thresholding function, standard
learning uses the ordinary version of the function. The quality of
the results are comparable (Fig. 3) between the uses of the two
functions, suggesting the affect of the modification is negligible;
further discussion is included in Sec. VIII-A.

B. Learned Priors for Multi-Channel MRI

As our first large-scale example of real-world applications,
we look at MRI, a powerful medical imaging modality that
non-invasively captures rich biophysical information without
ionizing radiation. Since MRI acquisition time is often directly
proportional to the number of acquired measurements, reducing
measurements leads to immediate impact on scan time, patient

throughput, and enables capturing fast-changing physiological
dynamics. Multi-channel MRI is the standard-of-care in clinical
systems and uses multiple receive coils distributed around the
body to acquire measurements in parallel. This parallel imag-
ing technique reduces the total number of required acquisition
frames for decoding [44]. Further, scan time and noise ampli-
fication can be additionally reduced by relying on signal prior
knowledge, allowing undersampling of the acquisition frames
(i.e. with compressed sensing [41]). Recently, PbNs have been
developed to learn the signal priors, achieving state-of-the-art
performance for multi-channel accelerated MRI [7], [11]. How-
ever, the PbNs are limited in network size and number of unrolled
iterations due to the amount of memory required for training.
This is an especially prominent problem when moving to high-
dimensional problems (e.g. 3D anatomical imaging, temporal
dynamics, etc.). Our memory-efficient learning reduces memory
footprint at training time, thereby enabling learning for larger
problems.

To validate our method, we first show results for the 2D
problem in [11], which has small enough memory requirements
for the standard backpropagation to fit on our GPUs. The PbN is
formed from 4 unrolled iterations of the HQS method and uses
a learnable Resnet as the image prior [4], [11]. Specifically, the
objective the PbN is minimizes

x� = argmin
x
‖PFSx− y‖22 + μ‖x− R(x)‖22, (15)

where S are the multi-channel coil sensitivities, F denotes
Fourier transform, and P is the undersampling mask used for
compressed sensing. The image prior is learned using a network,
R(x), with the invertible residual convolutional neural network
(RCNN) [21], [30], [45] architecture composed of a 5-layer
CNN where each layer has 64 channels and filters of 3× 3.
The RCNN’s learnable parameters are shared between each
PbN layer. To ensure that the invertible RCNN’s performance
is similar to the standard RCNN, we train with and without
required invertibility (supplement Sec.1).

We learn to reconstruct 256× 320 slices with measurements
from 8 channels and variable density Poisson Disc Fourier
undersampling at a rate of 4×. Data used for training and testing
is from [11], where ground truth brain images are used and data is
synthetically generated given the sensitivity and undersampling
masks. Training was conducted for 10 epochs with 350 training
data points and 10 testing data points, a batch size of 4, and a
learning rate of 1e−5 using ADAM [36]. In Fig. 4, we compare
image reconstructions using the priors learned by standard and
memory-efficient learning. As shown in Fig. 4(a), testing losses
and image reconstruction quality are similar for both methods
(Fig. 4(d), (e)), but our method uses 4.82× less memory, while
only requiring a 1.09× increase in time.

Finally, we demonstrate our method’s ability to learn priors for
a 3D volume reconstruction from under-sampled multi-channel
measurements - a problem that does not fit within typical
GPU memory limits. Specifically, we reconstruct volumes of
50× 256× 320 with measurements from 8 channels and vari-
able density Poisson Disc undersampling at a rate of 4×. Data
used is from [11] and is augmented to create more training

KELLMAN et al.: MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE COMPUTATIONAL IMAGING 1409

Fig. 4. Learned priors for multi-channel 2D under-sampled MRI: (a) Mean testing loss is similar for both standard backpropagation and memory-efficient
learning. (b) Ground truth reconstruction using fully sampled measurements, (c) linear parallel imaging reconstruction (no prior), (d) PbN reconstruction learned
using standard backpropagation and (e) PbN reconstruction learned using memory-efficient learning (3.7× reduced memory requirement, 1.2× increase in compute
time). Insets highlight fidelity of high-resolution features and noise reduction in both of the learned designs, as compared to the CG reconstruction. Reported memory
and time required is for a single learning update with batch size one.

Fig. 5. Learned priors for multi-channel under-sampled 3D MRI: (a) Mean training and testing loss for learning with our proposed memory-efficient technique.
(b) One slice of ground truth 3D reconstruction using fully sampled measurements, (c) linear parallel imaging reconstruction (no prior), (d) PbN reconstruction
using memory-efficient learning with ∼ 10 GB of memory. Standard learning is not shown because it requires more memory than would fit on our GPU.

examples by cropping down larger volumes to 50× 256× 320.
We use a similar PbN architecture as before for the reconstruc-
tion and training parameters, but now with a RCNN with 3D
filters (3× 3× 3) and 32 channels. This model would ordinarily
require ∼ 40 GB of memory using standard backpropagation
(∼ 10 GB per unrolled iteration), but only requires ∼ 10 GB
of memory using our method. In Fig. 5, we show results of the
learning loss and a single slice of the reconstructed volumes
from the ground truth (fully sampled), conjugate gradient (no
learning or signal prior), and after learning priors with our
memory-efficient learning scheme.

To further motivate the need for large-scale models, we per-
form an analysis of performance (PSNR) versus number of
unrolled iterations (Fig. 6). While the return diminishes as the
number of unrolled iterations increases, performance continues
to increase past 20 iterations. In this setting, when even a
single-layer and checkpoint require approximately 12 GB of
memory, our method will be more computationally efficient than
other memory-friendly methods such as forward checkpointing
(further discussed in Sec. VII).

Fig. 6. Multi-channel MRI performance versus number of unrolls: Average
testing PSNR for varying number of unrolled iterations. In this example we learn
independent parameters for each layer.

C. Learned Experimental Design for Fourier
Ptychographic Microscopy

Bright-field microscopy is a standard method for imaging
biological samples in vitro. As with most microscopes, one
must trade-off field-of-view (FoV) and resolution. Fourier Pty-
chographic Microscopy (FPM) [46] is a super-resolution (SR)

1410 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 7. Learned illumination design for Fourier Ptychographic Microscopy (FPM): (a) Mean testing loss is similar for both standard backpropagation and
memory-efficient learning. (b) Example low-resolution measurement, (c) ground truth reconstruction using all 89 LED measurements to perform 3.1× super
resolution, (d) reconstruction from only 8 measurements learned using standard backpropagation and (e) memory-efficient learning (92× reduced memory
requirement, 1.7× increase in compute time). Reported memory and time required is for a single learning update with batch size one.

method that computationally reconstructs gigapixel-scale im-
ages with both large FoV and high resolution from a series
of low-resolution images acquired with different illumination
settings. The illumination patterns can be conveniently created
by a programmable LED array source [47]. The system’s de-
pendence on many measurements limits its ability to image
live fast-moving biology. Multiplexing schemes for reducing
the number of measurements have been proposed [48].

Recently, state-of-the-art performance was achieved by form-
ing a PbN and learning its experimental design (the LED array
patterns) [8], [9]. However, the PbN was limited in scale due
to GPU memory constraints; terabyte-scale memory would be
required for learning patterns with all of the LEDs. Here, we
show that our proposed memory-efficient learning framework
reduces the necessary memory to only a few gigabytes, thereby
enabling full-scale learning on a consumer-grade GPU, which
in turn allows us to achieve higher factors of super resolution.

The PbN for learning FPM LED source patterns is formed
from the following phase retrieval optimization:

x� = argmin
x

K∑
k=1

∥∥∥ymk
−

L∑
l=1

ckl|Alx|2
∥∥∥
2

2
, (16)

where ymk
is the kth multi-LED measurement, Al = FHPlF

is the forward model for the lth LED [9], [46], Pl is the
microscope’s pupil function for the lth LED, F denotes 2D
Fourier transform, and ckl is the learnable brightness for the
lth LED in the kth measurement. A PbN is formed from N
unrolled iterations of gradient descent. We then minimize the
loss between the output of the PbN and the ground truth to learn
LED brightnesses over the dataset.

We again start by validating our method’s accuracy on a
small-scale problem that fits in GPU memory using standard
learning. We reproduce results in [9], learning illumination
patterns for eight measurements, which gives 3.1× resolution
improvement and 10× faster data capture. We set L = 4, the
number of fixed point iterations to invert gradient layers, and
checkpoints every 10 unrolled iterations. The testing loss be-
tween our method and standard learning are similar (Fig. 7(a)),
and the SR reconstructions with learned designs using standard
(Fig. 7(d)) and memory-efficient (Fig. 7(e)) methods are both

similar to the ‘ground truth’ reconstruction using 89 measure-
ments (Fig. 7(c)). Our memory-efficient learning approach,
however, reduces memory required from 5.69 GB to 0.062
GB, with compute time increasing by less than a factor of 2×.
Hence, our method produces comparable quality results as the
standard learning, but with significantly reduced (more than
91×) memory requirements.

Next, we use our memory-efficient learning scheme to solve
a larger-scale problem than was previously possible. For FPM,
that means using all 293 LEDs to achieve a higher factor of super
resolution (4.2×). 200 iterations are unrolled to create the PbN,
we set L = 4, and checkpoints every 13 unrolled iterations. For
this problem, standard backpropagation would require ∼ 500
GB of memory, while our method only requires ∼ 3 GB (using
15 checkpoints). In Fig 8, we demonstrate our learned design’s
ability to reduce the number of measurements required from 293
to 16, demonstrating 20× faster data capture with comparable
image quality to ground truth.

In this example, the number of unrolled iterations is deter-
mined by the conditioning of the problem as aspects of the
reconstruction are not learned (as they are in Sec. VI-B). We
perform an analysis of performance (PSNR) versus number of
unrolled iterations (Fig. 9) and show that for this problem at
least 100 iterations must be unrolled before we see diminish-
ing returns in performance. This analysis is in the context of
this level of super resolution and the number of measurements
learned. As the degree of super resolution grows or the number
of measurements is decreased, the problem will become worst
conditioned and more unrolled iterations will be required.

VII. MEMORY-COMPUTATION ANALYSIS

In Sec. VI we demonstrated several example uses of our
method, each representing a single point in the storage-
computation trade-off space. Here, we provide analysis to de-
termine when our method provides advantage over standard
backpropagation and forward checkpointing. We visualize the
complete storage-computation space and calculate when each
method is best (the fastest method that accommodates the
memory required). Specifically, we visualize the relationship
between storage-computation for varying input sizes (referred

KELLMAN et al.: MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE COMPUTATIONAL IMAGING 1411

Fig. 8. Large-scale learned illumination design for FPM: (a) Training and testing loss for memory-efficient learned design. (b) Example low-resolution
measurement, (c) ground truth reconstruction using all 293 LED measurements to perform 4.2× super resolution, (d) reconstruction from only 16 measurements
learned using memory-efficient learning with ∼ 3 GB memory. Standard learning is not shown because it would require ∼ 500 GB of memory, which is not
available on our GPU. Insets highlight high-resolution features.

Fig. 9. Fourier Ptychographic Microscopy performance versus number of
unrolls: Average testing PSNR for varying number of unrolled iterations.

to as checkpoint sizes), varying physics-based layer sizes, vary-
ing numbers of unrolls, and varying amounts of computation
required.

First, we calculate the memory and computation time require-
ments for all three methods. For standard backpropagation the
memory required is N ×A+B, where N is the number of
layers, A is the memory for a single physics-based layer, and
B is the memory for a single data input. The time required is
N × (Tfwd + Tbck), where Tfwd and Tbck are the computation
times for running a layer forward and backwards, respectively.
Forward checkpointing stores as many checkpoints as memory
affords. Once there are more layers than available memory for
checkpoints, layers are recomputed from the previous closest
checkpoint. Because backpropagation is performed in the re-
verse order of the forward pass, it is computationally expensive
to recompute layers when the number of layers far exceeds
the number of checkpoints. When checkpoints are stored every
K iterations the computational time required is N × (Tfwd +

Tbck) +
N(K+1)

2 × Tfwd. Finally, our method only requires
A+B in memory and N × (2Tfwd + Tbck + Tinv), where
Tinv is the time to invert each layer’s operations.

Both forward checkpointing and our method are memory-
friendly, but the computation time they require varies drastically
based on how many checkpoints can be stored and the compu-
tational cost of performing a layer’s forward versus its inverse
operations. Once forward checkpointing cannot store a single

Fig. 10. Fastest method for varying layer and checkpoint size: (a) Fastest
method for three scenarios where the ratio between forward and inverse layer
computation varies. Our method performs better with larger ratios because it
calls each layer’s inverse more and forward checkpointing calls each layer’s
forward more. (b) Fastest method for three scenarios with increasing number of
unrolled iterations. Our method performs better as more iterations are unrolled.
Sector color corresponds to the fastest method: purple, orange, yellow, and blue
representing standard backpropagation, forward checkpointing, our method, and
problems that do not fit on a single GPU (12 GB), respectively.

checkpoint per layer, its computation time grows quadratically,
while our method remains linear. Further, forward checkpointing
relies on the evaluation of layers’ forward operations, while our
method relies on the evaluation of layers’ inverse operations.

Fig. 10 illustrates when each method is fastest for varying
size physics-based layers and checkpoint sizes (determining how
many checkpoints can fit in memory). This analysis is done using
a GPU with 12 GB of memory. Fig. 10(a) shows the fastest
choice of method for three different cases: when inverse layer
computation is faster, the same speed, and slower than forward
layer computation. Our method (yellow) spans a larger area of
the trade-off space than forward checkpointing (orange) and

1412 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

standard backpropagation (purple) when inverse layer evalua-
tion is faster. This is the case when evaluating proximal and
least-squares update layers, often implemented using iterative
methods such as conjugate gradient, but whose inverse can be
expressed in closed form. For this experiment the number of un-
rolls is held constant with a value of 25. Fig. 10(b) shows which
method is fastest for varying size problems as the number of un-
rolled iterations varies. As more iterations are unrolled, forward
checkpointing can store relatively fewer checkpoints and thus
slows relative to our method. For this experiment Tfwd = Tinv .

The work of Putzky and Welling [17] ensures invertibility
by passing two intermediate variables into each layer requiring
double a checkpoint’s memory size in storage. Our method only
requires a single variable to be stored to ensure invertibility,
thereby enabling larger physics-based networks. The computa-
tion time required in [17] to perform inversion for each layer
is equal to the forward evaluation time, Tfwd/Tinv = 1. For
our method, the amount of computation required for a layer’s
inversion varies depending on its architecture. For gradient
layers, the typical amount of computation is 4× slower than
its forward evaluation, Tfwd/Tinv < 1. For proximal layers,
iterative in nature, the inverse can often be expressed in closed
form, i.e. Tfwd/Tinv > 1.

VIII. REMARKS

A. Discussion

Our proposed memory-efficient learning opens the door to
using unrolled physics-based networks for learning the design
of large-scale computational imaging systems that are not oth-
erwise possible due to GPU memory constraints, without a
significant increase in training time. Within this work we detail
how physics-based networks composed of gradient and proximal
update layers can be reversible to allow for memory-efficient
gradient computation. While we have demonstrated our pro-
cedure for PbNs formed from PGD and HQS methods, the
update layers we describe form the fundamental building blocks
of many larger PbNs (e.g. unrolling the updates of alternating
minimization).

For our method, the physics-based network must be invert-
ible. To achieve this at the layer level, sufficient conditions for
invertibility must be met. For gradient update layers, this comes
in the form of a Lipschitz constant constraint (Eq. 6). At the
network level, the convergent behavior of physics-based net-
works and reconstruction optimization (Eq. 2) makes accurate
reverse recalculation ill-posed and can cause numerical error
accumulation (as outlined in Sec. V). This is not an issue for
many PbNs as they truncate the number of unrolled iterations
prior to the optimizer’s convergence as an additional form of
regularization (i.e. early stopping) or to save computation. In
the case when convergent behavior is observed, checkpoints
should be used. A possible option is to measure the difference
between successive intermediate variables on the forward pass
of the network. If that quantity falls below a threshold, then
the optimization is approaching convergence and checkpoints
should be placed to mitigate the accumulation of error on the
reverse pass.

In some situations the relationship between storage and com-
putational complexity can be traded off with accuracy. For
gradient descent layers, the fixed-point method outlined in Alg. 4
is used to invert and, if not run to convergence, the inversion will
be less accurate. When the Lipschitz constant of the gradient
operator is large, more iterations (a larger value of L) will be
required to accurately invert the layer. Unfortunately, the ideal
Lipschitz constant for a gradient descent layer is larger. Practi-
cally, we find that only a few (e.g. 4 to 8) iterations are required.
For proximal layers, the inversion is accurate up to numerical
precision, but requires the iterative forward process of the layer
to be computed accurately for our method to be accurate.

In Sec. VI-A a modified soft thresholding function is used
in place of the proximal operator for the �1. While results
in Fig. 3 suggest the effect of this change is negligible, the
performance of the reconstruction could be reduced to allow
for the invertibility of the operation (Sec. IV-B) and use of our
method. Depending on the slope added the soft thresholding
function, the performance and invertibility are traded off. When
the slope is very small (on the order of machine epsilon), the
performance of the reconstruction will behave similar to the or-
dinary function, however, it will be less invertible due to floating
point quantization. When the slope is larger, the reconstruction
performance could be reduced because the operator does not well
model the original proximal function, but will be more linear,
thus be less affected by quantization and more invertible.

Acceleration layers to improve convergence of image re-
construction are commonly used in variants of PGD (termed
FISTA [49]) and can be incorporated into our framework. Typ-
ically, such layers linearly combine the output of the current
and previous layers. The acceleration layer cannot be inverted
from only the current layer’s output, however, with the storage
of additional information (this layer’s output and the previous
layer’s output) it is possible to invert an acceleration layer by
computing the inverse of a 2× 2 matrix.

Work by Mardani et al. (2019) [13] demonstrates that the
number of unrolled iterations can be reduced without significant
losses in performance. In Sec. VII, we showed that even for large
layer and checkpoint sizes and a moderate number of unrolls
(10-100), memory-efficient learning is required and our method
is computationally faster than forward checkpointing. Further,
it is not always appropriate to learn a signal prior. In Sec. VI-A
and Sec. VI-C only the experimental design is learned and the
image reconstruction is fixed. In such settings, methods in [13]
do not apply.

A limitation of our method is when each smaller auto-
differentiation graph (discussed in Sec. IV) is still too large to
fit in memory. In this situation more context-specific solutions
(e.g. coil compression for multi-channel MRI, using a smaller
field-of-view) or more efficient implementation of the system’s
fundamental operations is required.

B. Conclusion

Memory-efficient learning with physics-based networks is a
practical tool for large-scale computational imaging problems.

KELLMAN et al.: MEMORY-EFFICIENT LEARNING FOR LARGE-SCALE COMPUTATIONAL IMAGING 1413

Using the concept of reversibility, we implemented reverse-
mode differentiation with favorable storage and computational
complexities. We demonstrated our method on several repre-
sentative large-scale applications: 3D multi-channel compressed
sensing MRI and super-resolution optical microscopy, and ex-
pect many other computational imaging systems to fall within
our framework.

With the ever-continuing upward trend in the growth of com-
putational imaging system’s size and dimensionality, the need
for memory-efficient learning techniques will continue to be
in demand. Now, examples of even larger-scale systems exist:
extreme MRI [50] and XD-GRASP [51] in the area of medical
imaging, 3D fluorescence microscopy [52], [53] and optical
diffraction tomography [54] in the area of biological imaging,
and hyper-spectral imaging in the area of remote sensing.

ACKNOWLEDGMENT

The authors would like to thank Ke Wang for his insightful
discusses on image reconstruction and deep learning, as well
as Professor Ben Recht for our preliminary discussions on this
work.

REFERENCES

[1] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,”
in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 399–406.

[2] J. Sun et al., “Deep ADMM-Net for compressive sensing MRI,” in Proc.,
Adv. Neural Inf. Process. Syst., 2016, pp. 10–18.

[3] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1256–1272, Jun. 2016.

[4] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep CNN denoiser
prior for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 3929–3938.

[5] J. Zhang and B. Ghanem, “ISTA-net: Interpretable optimization-inspired
deep network for image compressive sensing,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 1828–1837.

[6] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein, “Unrolled optimiza-
tion with deep priors,” 2017, arXiv:1705.08041.

[7] K. Hammernik et al., “Learning a variational network for reconstruction of
accelerated MRI data,” Magn. Reson. Med., vol. 79, no. 6, pp. 3055–3071,
Nov. 2017.

[8] M. Kellman, E. Bostan, N. Repina, and L. Waller, “Physics-based learned
design: Optimized coded-illumination for quantitative phase imaging,”
IEEE Trans. Comput. Imag., vol. 5, no. 3, pp. 344–353, Sep. 2019.

[9] M. Kellman, E. Bostan, M. Chen, and L. Waller, “Data-driven design for
Fourier ptychographic microscopy,” in Proc. Int. Conf. Comput. Photog-
raphy, 2019, pp. 1–8.

[10] V. Sitzmann et al., “End-to-end optimization of optics and image process-
ing for achromatic extended depth of field and super-resolution imaging,”
ACM Trans. Graph., vol. 37, no. 4, pp. 1–13, Jul. 2018.

[11] H. K. Aggarwal, M. P. Mani, and M. Jacob, “Modl: Model-based deep
learning architecture for inverse problems,” IEEE Trans. Med. Imag.,
vol. 38, no. 2, pp. 394–405, Feb. 2018.

[12] P. Putzky and M. Welling, “Recurrent inference machines for solving
inverse problems,” in Proc. Int. Conf. Learn. Representations, 2019.

[13] M. Mardani et al., “Neural proximal gradient descent for com-
pressive imaging,,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 9573–9583.

[14] G. Ongie, A. Jalal, C. A. M. R. G. Baraniuk, A. G. Dimakis, and R. Willett,
“Deep learning techniques for inverse problems in imaging,” IEEE J. Sel.
Areas Inf. Theory, vol. 1, no. 1, pp. 39–56, May 2020.

[15] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[16] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Trans. Image Process., vol. 4, no. 7, pp. 932–946,
Jul. 1995.

[17] P. Putzky and M. Welling, “Invert to learn to invert,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 444–454.

[18] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation, 2nd ed. Philadelphia, PA, USA:
SIAM, 2008.

[19] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Computer-Assisted Intervention, 2015, pp. 234–241.

[20] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperparam-
eter optimization through reversible learning,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2113–2122.

[21] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible
residual network: Backpropagation without storing activations,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 2214–2224.

[22] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham,
“Reversible architectures for arbitrarily deep residual neural networks,” in
Proc. 32nd AAAI Conf. Artif. Intell., 2018.

[23] L. Ardizzone et al., “Analyzing inverse problems with invertible neural
networks,” in Proc. Int. Conf. Learn. Representations, 2019.

[24] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear independent
components estimation,” in Proc. Int. Conf. Learn. Representations, 2015.

[25] L. Dinh, J. Sohl Dickstein, and S. Bengio, “Density estimation using real
NVP,” 2016, arXiv:1605.08803.

[26] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invert-
ible 1x1 convolutions,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10 215–10 224.

[27] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-RevNet: Deep invertible
networks,” 2018, arXiv:1802.07088.

[28] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 6571–6583.

[29] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud,
“FFJORD: Free-form continuous dynamics for scalable reversible gener-
ative models,” 2018, arXiv:1810.01367.

[30] J. Behrmann, D. Duvenaud, and J.-H. Jacobsen, “Invertible residual net-
works,” 2018, arXiv:1811.00995.

[31] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a layer
in neural networks,” 2017, arXiv:1703.00443.

[32] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” 2018,
arXiv:1806.04910.

[33] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine, “Meta-learning
with implicit gradients,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 113–124.

[34] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 690–701.

[35] R. Liao et al., “Reviving and improving recurrent back-propagation,” 2018,
arXiv:1803.06396.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[37] A. Paszke et al., “Automatic differentiation in pytorch,” in Proc. Neural
Inf. Process. Syst., 2017.

[38] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous systems,” 2015. [Online]. Available: https://www.tensorflow.org/

[39] S. Banach, “Sur les opérations dans les ensembles abstraits et leur appli-
cation aux équations intégrales,” Fundam. Math., vol. 3, no. 1, 1922.

[40] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[41] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of
compressed sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58,
no. 6, pp. 1182–1195, Dec. 2007.

[42] D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Com-
pressive holography,” Opt. Express, vol. 17, no. 15, pp. 13 040–13 049,
2009.

[43] M. F. Duarte et al., “Single-pixel imaging via compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, Mar. 2008.

[44] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger,
“SENSE: Sensitivity encoding for fast MRI,” Magn. Reson. Med., vol. 42,
no. 5, pp. 952–962, Nov. 1999.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[46] G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution
Fourier ptychographic microscopy,” Nature Photon., vol. 7, no. 9,
pp. 739–745, Jul. 2013.

https://www.tensorflow.org/

1414 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

[47] Z. F. Phillips, R. Eckert, and L. Waller, “Quasi-dome: A self-calibrated
high-NA LED illuminator for Fourier ptychography,” in Proc. Imag. Appl.
Opt., Jun. 2017.

[48] L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Com-
putational illumination for high-speed in vitro Fourier ptychographic
microscopy,” Optica, vol. 2, no. 10, pp. 904–908, Oct. 2015.

[49] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[50] F. Ong et al., “Extreme MRI: Large-scale volumetric dynamic imaging
from continuous non-gated acquisitions,” Magn. Reson. Med., vol. 84,
no. 4, pp. 1763–1780, 2020.

[51] L. Feng, L. Axel, H. Chandarana, K. T. Block, D. K. Sodickson, and
R. Otazo, “XD-GRASP: Golden-angle radial MRI with reconstruction of
extra motion-state dimensions using compressed sensing,” Magn. Reson.
Med., vol. 75, no. 2, pp. 775–788, 2016.

[52] B.-C. Chen et al., “Lattice light-sheet microscopy: Imaging molecules to
embryos at high spatiotemporal resolution,” Science, vol. 346, no. 6208,
pp. 1257998-1–1257998-14, 2014.

[53] F. L. Liu, G. Kuo, N. Antipa, K. Yanny, and L. Waller, “Fourier diffuser-
scope: Single-shot 3D Fourier light field microscopy with a diffuser,” 2020,
arXiv:2006.16343.

[54] S. Chowdhury et al., “High-resolution 3D refractive index microscopy of
multiple-scattering samples from intensity images,” Optica, vol. 6, no. 9,
pp. 1211–1219, 2019.

Michael Kellman received the B.S. degree in electri-
cal and computer engineering from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2015, and the
M.S. and Ph.D. degrees in electrical engineering and
computer science from the University of California,
Berkeley, Berkeley, CA, USA, in 2017 and 2020,
respectively. He is a National Science Foundation
Graduate Research Fellow. His research is focused
on the design of large-scale computational imaging
systems for application in optical microscopy and
medical imaging.

Kevin Zhang is currently working toward the un-
dergraduate degree with the University of California,
Berkeley, Berkeley, CA, USA, and is intending to
graduate in 2021. He has previously worked as a
Research Assistant with the Computational Imaging
Lab from 2018 to 2020 as well as a Teaching Assistant
for the Electrical Engineering and Computer Science
(EECS) Department from 2019 to 2020 with the
University of California, Berkeley. Currently, he is
a research assistant with the Computer Vision Group
as well as a Research Assistant in a group headed by

Professor Gireeja Ranade. His current research interests include the application
of machine learning to control theory and computational imaging and the self-
supervised extraction of visual features from videos. He has several publications
in the field of deep learning applied to computational imaging.

Eric Markley received the B.S. degree in applied
mathematics and biomedical engineering from the
University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA, in 2019. He is a National Science
Foundation Graduate Research Fellow in the Bio-
engineering program with University of California,
Berkeley. Currently, he is a student in Prof. Laura
Waller’s lab working on joint experimental design and
image reconstruction problems in optical microscopy.

Jon Tamir (Member, IEEE) received the B.S. degree
in electrical and computer engineering (ECE) from
The University of Texas at Austin, Austin, TX, USA,
in 2011 and the Ph.D. degree in electrical engineer-
ing and computer sciences from the University of
California, Berkeley, Berkeley, CA, USA, in 2018,
where he was also a Research Associate in 2019. He
is an Assistant Professor with The University of Texas
at Austin with joint appointments in ECE and the
Dell Medical School. His research interests include
computational magnetic resonance imaging (MRI),

machine learning for inverse problems, and clinical translation. His work focuses
on applying fast imaging and efficient reconstruction techniques to MRI, with
the goal of enabling real clinical adoption. He is a core Developer of the Berkeley
Advanced Reconstruction Toolbox.

Emrah Bostan received the M.Sc. and Ph.D. de-
grees from EPFL, Lausanne, Switzerland, advised
by Michael Unser. He is an Assistant Professor with
the Informatics Institute, University of Amsterdam
(UvA). He was a Postdoctoral Researcher with the
Computational Imaging Lab, University of Califor-
nia, Berkeley, sponsored by Prof. Laura Waller. He
was also affiliated with the Berkeley Artificial Intelli-
gence Research Laboratory and Berkeley Center for
Computational Imaging in Berkeley.

Michael Lustig received the B.Sc. degree in electrical
engineering from the Technion - Israel Institute of
Technology, Haifa, Israel, in 2002, and the M.Sc. and
Ph.D. degrees in electrical engineering from Stanford
University, Stanford, CA, USA, in 2004 and 2008,
respectively. He is an Associate Professor in EECS.
He joined the faculty of the EECS Department, UC
Berkeley in Spring 2010. His research interests focus
on computational imaging methods in medical imag-
ing, particularly magnetic resonance imaging (MRI).
He is a jolly good Fellow of the Society of Magnetic

Resonance in Medicine.

Laura Waller received the B.S., M.Eng., and Ph.D.
degrees from the Massachusetts Institute of Technol-
ogy (MIT), Cambridge, MA, USA, in 2004, 2005,
and 2010, respectively. She is the Ted Van Duzer
Associate Professor of Electrical Engineering and
Computer Sciences (EECS) with the University of
California, Berkeley, a Senior Fellow with the Berke-
ley Institute of Data Science, and affiliated with the
UCB/UCSF Bioengineering Graduate Group. She
was a Postdoctoral Researcher and a Lecturer of
Physics with Princeton University from 2010 to 2012.

She is a Packard Fellow for Science and Engineering, Moore Foundation
Data-driven Investigator, Bakar Fellow, OSA Fellow, and Chan-Zuckerberg
Biohub Investigator. She has recieved the Carol D. Soc Distinguished Grad-
uate Mentoring Award, Agilent Early Career Professor Award (Finalist), NSF
CAREER Award, and the SPIE Early Career Achievement Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

